The Properties of Fuzzy Green Relations on Bilinear Form Semigroups

Karyati

Agus Maman Abadi Department of Mathematics Education, Yogyakarta State University Yogyakarta, Indonesia Email: <u>karyati@uny.ac.id</u>, jengkaruny@gmail.com

Abstract—The Green relations on semigroups have been introduced by Howie [3]. They are right Green relation \mathcal{R} , left Green relation \mathcal{L} and (two sided) Green relation I. The right Green relation \mathcal{R} is defined as $\{(x, y) \in S \times S | \langle y \rangle_R\}$, with $\langle x \rangle_R$ denotes the right ideal generated by an element x (or called the principle right ideal generated by x. The definition of the left Green relation L and the Green relation \mathcal{I} are similar to the definition of the right Green relation. In this paper we will construct the definition of the fuzzy right Green relation (denoted by \mathcal{R}^F), the fuzzy left Green relation (denoted by \mathcal{L}^F) and the fuzzy Green relation (denoted by \mathcal{I}^F) on a semigroup. First we define a fuzzy ideal (right/left) generated by a fuzzy subset (a fuzzy principle ideal) on a semigroup and their examples. Based on the fuzzy principle ideal definition, we define a fuzzy (right/left) Green relation on a semigroup. The fuzzy subset μ and ρ are fuzzy (right/left) Green related if and only if the fuzzy (right/left) ideal generated by μ is equal to the fuzzy (right/left) ideal generated by ρ .

Keywords—Green relation, fuzzy ideal, fuzzy pricipal ideal, fuzzy Green relation

I. Introduction

A non empty subset *I* of a semigroup *S* is called a right (left) ideal if $IS \subseteq I$ ($SI \subseteq I$) and an ideal (two sided) if *I* is both a right ideal and a left ideal. The right (left) generated by $x \in S$ is denoted by $\langle x \rangle_R$ ($\langle x \rangle_L$) and an ideal generated by $x \in S$ is denoted by $\langle x \rangle$. The Green relation on a semigroup has been introduced by Howie [3]. They are right Green relation (R), the left Green relation (L) and the Green relation, (I) . The green relation $\mathcal{R}, \mathcal{L}, \mathcal{I}$ are equivalence relations, defined as follow:

$$\mathcal{R} = \{ (x, y) \in S \times S \mid \langle x \rangle_R = \langle y \rangle_R \}$$

$$\mathcal{L} = \{ (x, y) \in S \times S \mid \langle x \rangle_L = \langle y \rangle_L \}$$
$$\mathcal{I} = \{ (x, y) \in S \times S \mid \langle x \rangle = \langle y \rangle \}$$

Some papers related to the fuzzy ideal of semigroups, the fuzzy ideal of semigroups generated by a fuzzy singleton and their properties have been introduced by Karyati [5]. In this paper we will discuss how to define the fuzzy Green relations on a semigroup based on the fuzzy (right/left) ideal generated by a fuzzy subset of this semigroup.

II. Fuzzy Green Relations on semigroup

Refer to Asaad [2], Kandasamy [4], Mordeson and Malik [7], a fuzzy subsemigroup μ of a semigroup S is defined as a mapping from S into the interval [0,1], i.e. $\mu: S \to [0,1]$ which fulfils the condition $\mu(xy) \ge \min\{\mu(x), \mu(y)\}$ for all $x, y \in S$. A fuzzy subset μ is called a fuzzy right (fuzzy left) ideal of S, if for every $x, y \in S$ then $\mu(xy) \ge \mu(x)(\mu(xy) \ge \mu(x))$ and μ is called fuzzy ideal of S if μ is both a fuzzy right ideal and a fuzzy left ideal, i.e. $\mu(xy) \ge \max\{\mu(x), \mu(y)\}$ for all $x, y \in S$. Fuzzy subsets λ and μ are called $\lambda \subseteq \mu$ if and only if $\lambda(x) \le \mu(x)$ for every $x, y \in S$. A fuzzy relation θ of S is defined as a mapping from $S \times S$ into the closed interval [0,1].

Definition 2.1. ([1], [6], [9]) Let *S* be a semigroup and μ be a fuzzy relation on *S*. Then

- (1) A fuzzy relation μ on S is said to be reflexive if $\mu(x, x) = 1$ for all $x \in S$
- (2) A fuzzy relation μ on S is said to be symmetric if $\mu(x, y) = \mu(x, y)$ for all $xx, y \in S$
- (3) If $\mu_1 = \mu_2$ are two relations on S, then their maxproduct composition denoted by $\mu_1 \circ \mu_2$ is defined as

$$\mu_1 \circ \mu_2(x, y) = \max_{z \in S} \{ \mu_1(x, z), \mu_2(z, y) \}$$

(4) If $\mu_1 = \mu_2 = \mu$ and $\mu \circ \mu \leq \mu$, then the fuzzy relation μ is called transitive.

Refer to Aktas [1], Kuroki [6], and Murali [9], we give some kinds of relations defined as follow :