SYNTHESIS AND CHARACTERIZATION OF Cax $\mathrm{Co}_{1-\mathrm{x}} \mathrm{TiO}_{3}$ AND ITS PHOTOCATALYTIC ACTIVITY ON METHYLENE BLUE PHOTODEGRADATION

A.K. Prodjosantoso ${ }^{*}$, C. Kusumawardani, P. Utomo
Chemistry Department, Yogyakarta State University, Yogyakarta, Indonesia, 55281
*E_mail: prodjosantoso@uny.ac.id

A series of $\mathrm{Ca}_{\mathrm{x}} \mathrm{Co}_{1-\mathrm{x}} \mathrm{TiO}_{3}$ has been prepared through the ceramic method as polycrystalline powders with $\mathrm{x}=0,0.01,0.025,0.05$, and 0.1 . The structure of resulting materials was refined from a powder X-ray diffraction using the Rietvield method showing the perovskitetype structure isostructural with CaTiO_{3}. The morphology and particle size of $\mathrm{Ca}_{\mathrm{x}} \mathrm{Co}_{1-\mathrm{x}} \mathrm{TiO}_{3}$ were studied using SEM/EDX that showed a particle size of around 3.5 nm with nonhomogenous particle sphere shapes. The materials' electronic structure was studied by using UV/Vis spectroscopy method, which showed that the prepared $\mathrm{Ca}_{\mathrm{x}} \mathrm{Co}_{1-\mathrm{x}} \mathrm{TiO}_{3}$ having good response in the visible region with the band gap energy $\left(E_{g}\right)$ of around 2.2 eV , which is highly potent as visible light photocatalysts. The adsorption capacity and adsorption equilibrium constant of the oxides to the methylene blue were also studied. The adsorption process in $\mathrm{Ca}_{\mathrm{x}} \mathrm{Co}_{1-\mathrm{x}} \mathrm{TiO}_{3}$ materials follows the Langmuir adsorption type as a consequence of homogenous pore structures. The catalytic activity of $\mathrm{Ca}_{\mathrm{x}} \mathrm{Co}_{1-\mathrm{x}} \mathrm{TiO}_{3}$ on the methylene blue degradation are also discussed.

Keywords : $\mathrm{Ca}_{x} \mathrm{Co}_{1-\mathrm{x}} \mathrm{TiO}_{3}$, perovskite structure, visible-light photocatalyst

Introduction

The perovskite structure compound, ABO_{3}, and its derivatives are widely investigated due to their significance in both fundamental research and the high potential applications because of their diverse physical properties (Cohen, 1992; Hu et al., 2016, Kanhere, et al., 2014). The MTiO_{3} perovskite (where M is Ca, Sr or Ba) is one of the most attracting materials since it has a unique electronic structure, and so it is developed for solar applications, such as photo-electrochemical cells, solar cells, and photovoltaic technologies (Shi et al., 2012). The compounds are modified by

